National Center and State Collaborative
General Supervision Enhancement Grant
(NCSC GSEG)

Martha L. Thurlow
thurl001@umn.edu

Angela Lee
a.lee@uncc.edu

OSEP Leadership Conference – August 3, 2011
National Center and State Collaborative (NCSC)

Building an **assessment system** based on research-based understanding of:

- technical quality of AA-AAS design
- formative and interim uses of assessment data
- summative assessments
- academic curriculum and instruction for students with significant cognitive disabilities
- student learning characteristics and communication
- effective professional development

Alternate assessments to PARCC and SBAC, 4-5 years
Dynamic Learning Maps (DLM) a partner AA-AAS project
NCSC States

Organizations
- National Center on Educational Outcomes
- National Center for the Improvement of Educational Assessment
- University of Kentucky
- University of North Carolina-Charlotte
- edCount, LLC
Ten Challenges Identified by Partners and States

- College and career readiness
- Learning progressions
- Formative and interim uses of assessment data
- Instruction and curriculum tools – concrete supports
- Differences within the 1% population – communicative competence 70-30? 70-15-15? Teacher capacity issues
- Flexibility and standardization balance
- Growth
- Technology
- Comparability
- Costs
Key Ideas for Building the Foundation

- Articulating CCR
- Defining the construct linked to CCSS
- Instructional models – Principle of Uncertainty; Least Dangerous Assumption
- Communicative competence
- Delivering PD, building capacity
- Validity argument
Summative Assessment: Big Ideas Thus Far

• Strong educational logic to within and across grade domain sampling (CCSS; LPFs; CCC)

• Standardization – provide the tasks and define allowable adaptations – Evidence-Centered Design principles

• Flexibility – entry points by item/content with controls on challenge and appropriateness

• Independent performance

• Communicative competence addressed in parallel, building teacher capacity
Symbolic Language Level

Pre – symbolic Language Users

Emerging Symbolic Users

Symbolic Language Users
Curriculum

Assessment

Observations

Interpretation Model

Instruction

Domain-Based Models of Learning & Understanding

(JP's slide)
C-I-A Big Ideas Thus Far

• Strong educational logic to curriculum resources and professional development (CCSS; LPFs; CCC)

• Formative assessments and interim uses – progress monitoring – building understanding of what to expect and how to teach essential skills and knowledge – check on educational logic – ability to learn more about assessment strategies that work well

• Communicative competence central for very small percentage of students – gateway skills

• Build professional development infrastructure in every state to build capacity for transitions
Curriculum
Domain-Based Models of Learning & Understanding
Instruction
Observations
Interpretation Model

Assessment

COHERENT, ALIGNED, FOCUSED
Developing a system of assessments supported by curriculum, instruction, and professional development to ensure that students with significant cognitive disabilities achieve increasingly higher academic outcomes and leave high school ready for post-secondary options.

The contents of this handout were developed under a grant from the Department of Education (PR/Award #: H373X100002, Project Officer, Susan.Weigert@Ed.gov). However, the contents do not necessarily represent the policy of the Department of Education and no assumption of endorsement by the Federal government should be made.
National Center and State Collaborative: Curriculum & Instruction

University of North Carolina at Charlotte

Center for Assessment
Foundation for the Content

• Learning progressions
 – Hypothesized pathways about how most students typically learn concepts and big ideas
 – Developed for typically developing children

• This project uses a developed learning progressions framework (Hess et al., 2010) in ELA and math to inform what content is taught as well as the stream (general sequence) of content that helps students reach understanding of the concepts/big idea

• Each descriptor of observable learning in Hess’s learning progressions is called a progress indicator (PI)
Making Standards Accessible

- **Option One**: Work directly from the Common Core State Standards without translation
- **Option Two**: Write extensions; one extension for each Common Core State Standard
- **Option Three** (New Idea!): Identify the core content using learning progressions as an organizational framework that is aligned with the Common Core State Standards
 - Option 3 is the NCSC approach
NCSC (WG2) is Creating Core Connectors with Dual Alignment

Aligned with Common Core State Standards
- Each and every Core Content Connector (CCC) is aligned with the closest match Common Core State Standard (CCSC)
 - This alignment is being developed with a content expert who has deep knowledge of the CCSS
 - Will be useable across states who adopt the Common Core

Aligned with Learning Progressions
- Each and every Core Content Connector was derived from the Learning Progressions framework
 - This alignment is being verified with developer of the LP, Karin Hess
Advantage of Dual Alignment

<table>
<thead>
<tr>
<th>Aligning with Common Core</th>
<th>Aligning with Learning Progressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Promotes access to grade level content standards</td>
<td>• Promotes teaching towards defined learning outcomes</td>
</tr>
<tr>
<td>• Fosters meaningful instruction of Common Core standards for students with SCD</td>
<td>• Promotes sequential instruction across grades and grade bands within big ideas or concepts (i.e., first teach this, and then build on that to teach this, and then this to develop mastery of a bigger idea in math or ELA)</td>
</tr>
</tbody>
</table>
Why Core Content Connectors (CCCs)

• To contribute to a fully aligned and coherent system of content, instruction, and assessment.
 – CCCs define connections between the PI and the CCSS
 – CCCs pinpoint *the starting point* to plan instruction and assessment for students with SCD that has strong core content
 – CCCs will be used by NCSC for creating the alternate assessment items, creating curricular guides, and for professional development
Key Points to Remember about Common Core Connectors

Identify the Core Content of the Common Core State Standards

Identify How to Build Learning Across Grades (from Learning Progressions)

Beginning

Building

Outcome
Purpose and Criteria for the Core Content Connectors

Criteria for Development of CCC

- Access the CCSS in a learning progressions framework (dually aligned with CCSS&LPF)
- Promote FULL access to the CCSS (all domains and clusters)
- Restate the big idea of the CCSS ("core" content) for special educators
- Target benchmarks towards achievement

Purpose and Use of CCC

- Used to develop the NCSC alternate assessment
- Incorporated into the Curriculum Resource Guides to promote instruction of CCSS for students with SCD
Steps We Follow for Creating Core Content Connectors

Process:

1. Identify the content within the Learning Progression for the strand, learning targets, and progress indicators
2. Write Core Content Connectors that are a finer grain size for this progression at each grade level
3. Identify best match Common Core State Standard (Domain & Cluster headings for math, Anchor standards for reading) for each connector
4. Review with state partners
5. Validate the Core Content Connectors
 1. With content experts (alignment and accuracy of information)
 2. With teachers (useability)
Example of the CCC- Big Idea- Geometry

<table>
<thead>
<tr>
<th>Properties and attributes of shapes and figures and their corresponding parts</th>
<th>Grades K-2</th>
<th>Grades 3-4</th>
<th>Grades 5-6</th>
<th>Grades 7-8</th>
<th>HS</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-1a1 Recognize two-dimensional shapes (e.g., circle, square, triangle, rectangle) regardless of orientation of size</td>
<td>3-1h1 Recognize two-dimensional shapes (e.g., rhombus, pentagons, hexagons, octagon, ovals, equilateral, isosceles, and scalene triangles)</td>
<td>5-1a Recognize properties of simple plane figures</td>
<td>7-1e Construct or draw plane figures using properties.</td>
<td>8-1g Recognize congruent and similar figures</td>
<td>HS-1b Use definitions to determine congruency and similarity of figures</td>
</tr>
<tr>
<td>K-1a2 Recognize shapes in environment</td>
<td>3-1h2 Compare shapes based upon their attributes</td>
<td>5-1b Distinguish plane figures by their properties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1b1 Distinguish two-dimensional shapes based upon their attributes (i.e., size, corners, and points)</td>
<td>4-1j1 Recognize a point, line, line segment, rays</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Progress Indicators</td>
<td>Grade 5 CCCs</td>
<td>Common Core State Standard</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------</td>
<td>-----------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.GM.1j recognizing and drawing points, lines, line segments, rays, angles, and perpendicular and parallel lines and identifying these in plane figures 4.G-1</td>
<td>5.GM.1j6 Recognize parallel and perpendicular lines within the context of figures</td>
<td>4.G.1 Draw points, lines, line segments, rays, angels, perpendicular, and parallel lines. Identify these in two-dimensional figures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M.GM.1a describing and classifying plane figures based on their properties 5.G-3, 4</td>
<td>5.GM.1a Recognize properties of simple plane figures</td>
<td>5.G.3 Understand that attributes belonging to a category of two dimensional figures also belong to all subcategories of that category</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M.GM.1b recognizing and using properties belonging to categories and subcategories of plane figures (e.g., all rectangles have four right angles, so all squares are rectangles and have four right angles) 5.G-3</td>
<td>5.GM.1b Distinguish plane figures by their properties</td>
<td>5.G.4 Classify two dimensional figures in a hierarchy based on properties</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Explanations and Clarifications: The CCC **5.GM.1j6** is linked to the CCSS 4.G.1. This standard is also addressed in 4th grade but because the standards addresses a number of skills, it has also been carried over into 5th grade where the skills learned in 4th grade can be built upon.
Plan for CCC
Development and Validation

• Math
 – develop Summer, 2011
 – Validate beginning Fall, 2011
 – Disseminate for use Summer, 2012 to all NCSC states

• ELA
 – Develop Fall, 2011
 – Validate beginning Spring, 2012
 – Disseminate for use Summer, 2012 to all NCSC states